2d automata

This commit is contained in:
Thorn Avery 2021-04-19 20:17:34 +12:00
parent 8ba2ad5da5
commit b45de145fe
3 changed files with 2441 additions and 18 deletions

View file

@ -1,7 +1,14 @@
# cellularAutomata
!!! WARNING !!!
this will probably leak memory until i write a clamp function
also this readme is out of date
!!! WARNING !!!
a small application for running a one-dimensional cellular automata from random inputs, using comonads
now also supports 2d automata, check out [here](conwayExample.txt) for an example of the current output of the program
## usage
the program will default to the size of the window

2320
conwayExample.txt Normal file

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,5 @@
module Main where
--import System.Random
import Control.Monad
import System.Process
import System.Random
@ -81,7 +80,13 @@ boundw n = bound (x-m) x
-- may need to generalise the number
-- of states
data CellState = Alive | Dead
deriving Eq
deriving (Eq, Bounded, Enum)
instance Random CellState where
random g = case randomR (fromEnum (minBound :: CellState), fromEnum (maxBound :: CellState)) g of
(r, g') -> (toEnum r, g')
randomR (a,b) g = case randomR (fromEnum a, fromEnum b) g of
(r, g') -> (toEnum r, g')
-- how the states are displayed on screen
-- this should probably be input to a function
@ -115,7 +120,7 @@ rule3 (Space (l:_) m (r:_))
-- take a space and a rule and
-- return the next space
step :: (Space t -> t) -> Space t -> Space t
step :: Comonad w => (w t -> t) -> w t -> w t
step f w = w =>> f
---------------
@ -129,6 +134,74 @@ ilobs rng = b : (ilobs r)
where
(b,r) = random rng
-- this is kinda gross but if it works it works
takeGive :: Int -> [a] -> ([a],[a])
takeGive n as = ( (take n as), (drop n as) )
--------------------------
-- 2d cellular automata --
--------------------------
data Space2 t =
Space2 [(Space t)]
(Space t)
[(Space t)]
instance Functor Space2 where
fmap f (Space2 u m d) =
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
instance Comonad Space2 where
duplicate w =
Space2 (tail $ iterate (f up2) dm)
dm
(tail $ iterate (f down2) dm)
where
f g (Space l m r) = Space (fmap g l) (g m) (fmap g r)
dm = Space (tail $ iterate left2 w) w (tail $ iterate right2 w)
extract (Space2 _ m _) = extract m
down2 :: Space2 t -> Space2 t
down2 w@(Space2 u m []) = w
down2 (Space2 u m (d:ds)) = Space2 (m:u) d ds
up2 :: Space2 t -> Space2 t
up2 w@(Space2 [] m d) = w
up2 (Space2 (u:us) m d) = Space2 us u (m:d)
left2 :: Space2 t -> Space2 t
left2 (Space2 u m d) = Space2 (fmap left u) (left m) (fmap left d)
right2 :: Space2 t -> Space2 t
right2 (Space2 u m d) = Space2 (fmap right u) (right m) (fmap right d)
bound2 :: Int -> Int -> Int -> Int -> Space2 t -> [[t]]
bound2 u d l r (Space2 uw mw dw) = (reverse (take u (map (bound l r) uw))) ++ ((bound l r mw):(take d (map (bound l r) dw)))
bound2w :: Int -> Int -> Space2 t -> [[t]]
bound2w x y = bound2 (r-q) r (n-m) n
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
--------------
-- 2d rules --
--------------
conway :: Space2 CellState -> CellState
conway (Space2 (u:_) m (d:_))
= case me of
Alive -> if (length ns) == 2 || (length ns == 3) then Alive else Dead
Dead -> if (length ns) == 3 then Alive else Dead
where
f b (Space (l:_) m (r:_)) = [l,r] ++ (if b then [m] else [])
ns = filter (== Alive) $ concat [ (f True u), (f False m), (f True d) ]
me = extract m
-----------------
-- gross io bs --
-----------------
@ -146,6 +219,7 @@ ilobs rng = b : (ilobs r)
data Options = Options
{ optWidth :: Int
, optGenerations :: Int
, optHeight :: Int
} deriving Show
-- the default options for the program
@ -155,7 +229,8 @@ data Options = Options
defaultOptions :: Int -> Int -> Options
defaultOptions w h = Options
{ optWidth = w
, optGenerations = h
, optGenerations = 40
, optHeight = h
}
-- the avaliable options
@ -167,6 +242,9 @@ options =
, Option ['g'] ["generations"]
(ReqArg (\t opts -> opts { optGenerations = (read t) }) "GENERATIONS")
"time steps to simulate"
, Option ['h'] ["height"]
(ReqArg (\t opts -> opts { optHeight = (read t) }) "HEIGHT")
"term height"
]
-- parse the options into the structure
@ -188,12 +266,30 @@ parseArgs = do
-- main loop --
---------------
createRandSpace :: StdGen -> Space CellState
createRandSpace rng =
Space (tail $ map snd $ iterate f (r1, Alive))
(fst (random rng))
(tail $ map snd $ iterate f (r2, Alive))
where
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
(r1,r2) = split rng
createRandSpace2 :: StdGen -> Space2 CellState
createRandSpace2 rng =
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
(createRandSpace rng)
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
where
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
(r1,r2) = split rng
-- simply print the current space, then recurse to the next
runAutomata :: Space CellState -> Int -> Int -> IO ()
runAutomata s 0 w = putStrLn $ concat $ map show $ boundw w s
runAutomata s n w = do
putStrLn $ concat $ map show $ boundw w s
runAutomata (step rule s) (n - 1) w
--runAutomata :: Space2 CellState -> Int -> Int -> IO ()
--runAutomata s 0 w = putStrLn $ concat $ map show $ boundw w s
--runAutomata s n w = do
-- mapM_ putStrLn $ map show $ concat $ bound2w w s
-- runAutomata (step conway s) (n - 1) w
main :: IO ()
main = do
@ -201,12 +297,12 @@ main = do
rng <- getStdGen
let cs = map (\x -> if x then Alive else Dead) $ ilobs rng
let w = (optWidth options)
let h = (optGenerations options)
let wh = (w + 1) `div` 2
let m = head cs
let l = take wh $ drop 1 cs
let r = take wh $ drop wh $ drop 1 cs
let s = Space (l ++ (repeat Dead)) m (r ++ (repeat Dead))
-- non-random starting position for rule3 (the serpinski triangle)
--let s = Space (repeat Dead) Alive (repeat Dead)
runAutomata s h w
let h = (optHeight options)
let g = (optGenerations options)
let s = createRandSpace2 rng
mapM_ (f w h) (loop conway g s)
where
f w h s = do
mapM_ putStrLn $ map (concat . (map show)) $ bound2w w h s
putStrLn (take w (repeat '-'))
loop f n s = take n $ iterate (step f) s