working 2d animation, no memory leak
This commit is contained in:
parent
d582c20af3
commit
bdda683c42
|
@ -3,7 +3,8 @@
|
||||||
module Automata where
|
module Automata where
|
||||||
|
|
||||||
import Comonad
|
import Comonad
|
||||||
import Spaces
|
import Spaces.Space1
|
||||||
|
import Spaces.Space2
|
||||||
import System.Random
|
import System.Random
|
||||||
import GHC.Generics
|
import GHC.Generics
|
||||||
import Control.DeepSeq
|
import Control.DeepSeq
|
||||||
|
|
25
src/Main.hs
25
src/Main.hs
|
@ -9,7 +9,8 @@ import System.Console.GetOpt
|
||||||
import System.Environment(getArgs, getProgName)
|
import System.Environment(getArgs, getProgName)
|
||||||
import Data.Maybe (fromMaybe)
|
import Data.Maybe (fromMaybe)
|
||||||
import Comonad
|
import Comonad
|
||||||
import Spaces
|
import Spaces.Space2
|
||||||
|
import Spaces.Space1
|
||||||
import Automata
|
import Automata
|
||||||
import Brick
|
import Brick
|
||||||
import Brick.BChan (newBChan, writeBChan)
|
import Brick.BChan (newBChan, writeBChan)
|
||||||
|
@ -140,7 +141,7 @@ main = do
|
||||||
g <- initGame
|
g <- initGame
|
||||||
let buildVty = V.mkVty V.defaultConfig
|
let buildVty = V.mkVty V.defaultConfig
|
||||||
initialVty <- buildVty
|
initialVty <- buildVty
|
||||||
void $ customMain initialVty buildVty (Just chan) (app h w) (clamp2cw w h g)
|
void $ customMain initialVty buildVty (Just chan) (app h w) (clamp2 w h g)
|
||||||
|
|
||||||
handleEvent :: (Space2 CellState) -> BrickEvent Name Tick -> EventM Name (Next (Space2 CellState))
|
handleEvent :: (Space2 CellState) -> BrickEvent Name Tick -> EventM Name (Next (Space2 CellState))
|
||||||
handleEvent g (AppEvent Tick) = continue $ step rps g
|
handleEvent g (AppEvent Tick) = continue $ step rps g
|
||||||
|
@ -153,7 +154,7 @@ drawUI h w g = [ C.center $ drawGrid h w g ]
|
||||||
drawGrid :: Int -> Int -> Space2 CellState -> Widget Name
|
drawGrid :: Int -> Int -> Space2 CellState -> Widget Name
|
||||||
drawGrid h w g = vBox rows
|
drawGrid h w g = vBox rows
|
||||||
where
|
where
|
||||||
bw = bound2cw w h g
|
bw = mat2 g
|
||||||
rows = [ hBox $ cellsInRow r | r <- bw ]
|
rows = [ hBox $ cellsInRow r | r <- bw ]
|
||||||
cellsInRow y = map drawCell y
|
cellsInRow y = map drawCell y
|
||||||
|
|
||||||
|
@ -166,3 +167,21 @@ rockAttr, scissorsAttr, paperAttr :: AttrName
|
||||||
rockAttr = "rockAttr"
|
rockAttr = "rockAttr"
|
||||||
paperAttr = "paperAttr"
|
paperAttr = "paperAttr"
|
||||||
scissorsAttr = "scissorsAttr"
|
scissorsAttr = "scissorsAttr"
|
||||||
|
|
||||||
|
createRandSpace :: Random a => StdGen -> Space a
|
||||||
|
createRandSpace rng =
|
||||||
|
Space (tail $ map snd $ iterate f (r1, (fst (random rng))))
|
||||||
|
(fst (random rng))
|
||||||
|
(tail $ map snd $ iterate f (r2, (fst (random rng))))
|
||||||
|
where
|
||||||
|
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
|
||||||
|
(r1,r2) = split rng
|
||||||
|
|
||||||
|
createRandSpace2 :: Random a => StdGen -> Space2 a
|
||||||
|
createRandSpace2 rng =
|
||||||
|
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
|
||||||
|
(createRandSpace rng)
|
||||||
|
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
|
||||||
|
where
|
||||||
|
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
|
||||||
|
(r1,r2) = split rng
|
||||||
|
|
176
src/Spaces.hs
176
src/Spaces.hs
|
@ -1,176 +0,0 @@
|
||||||
{-# LANGUAGE BangPatterns #-}
|
|
||||||
{-# LANGUAGE DeriveGeneric #-}
|
|
||||||
|
|
||||||
module Spaces where
|
|
||||||
|
|
||||||
import Comonad
|
|
||||||
import System.Random
|
|
||||||
import Control.DeepSeq
|
|
||||||
import GHC.Generics
|
|
||||||
|
|
||||||
------------
|
|
||||||
-- spaces --
|
|
||||||
------------
|
|
||||||
|
|
||||||
-- a locally focussed space
|
|
||||||
data Space t = Space [t] t [t]
|
|
||||||
deriving (Generic, Generic1)
|
|
||||||
|
|
||||||
instance NFData a => NFData (Space a)
|
|
||||||
instance NFData1 Space
|
|
||||||
|
|
||||||
-- spaces are also functors
|
|
||||||
instance Functor Space where
|
|
||||||
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
|
|
||||||
|
|
||||||
-- our space is a comonad
|
|
||||||
instance Comonad Space where
|
|
||||||
-- duplicate will create a new space where
|
|
||||||
-- the focussed element is our original space
|
|
||||||
-- and each side is increasingly shifted copies
|
|
||||||
-- in that direction
|
|
||||||
duplicate w =
|
|
||||||
Space (tail $ iterate left w)
|
|
||||||
w
|
|
||||||
(tail $ iterate right w)
|
|
||||||
-- extract simply returns the focussed element
|
|
||||||
extract (Space _ c _) = c
|
|
||||||
|
|
||||||
-- functions for moving the point
|
|
||||||
-- of locality.
|
|
||||||
-- todo: question the empty list cases
|
|
||||||
-- most spaces should be infinite
|
|
||||||
right :: Space t -> Space t
|
|
||||||
right w@(Space l m []) = w
|
|
||||||
right (Space l c (r:rs)) = Space (c:l) r rs
|
|
||||||
|
|
||||||
left :: Space t -> Space t
|
|
||||||
left w@(Space [] m r) = w
|
|
||||||
left (Space (l:ls) c r) = Space ls l (c:r)
|
|
||||||
|
|
||||||
-- bound will take an infinite space
|
|
||||||
-- and bound it by i and j on each side
|
|
||||||
-- (not including the focus) and
|
|
||||||
-- turn it into a list for printing
|
|
||||||
bound :: Int -> Int -> Space t -> [t]
|
|
||||||
bound i j (Space l c r) = (reverse (take i l)) ++ (c:(take j r))
|
|
||||||
|
|
||||||
-- boundw works as above, but the
|
|
||||||
-- entire list will be the size
|
|
||||||
-- given
|
|
||||||
boundw :: Int -> Space t -> [t]
|
|
||||||
boundw n = bound (x-m) x
|
|
||||||
where
|
|
||||||
o = if odd n then 1 else 0
|
|
||||||
m = if even n then 1 else 0
|
|
||||||
x = (n - o) `div` 2
|
|
||||||
|
|
||||||
---------------
|
|
||||||
-- 2d spaces --
|
|
||||||
---------------
|
|
||||||
|
|
||||||
data Space2 t =
|
|
||||||
Space2 [(Space t)]
|
|
||||||
(Space t)
|
|
||||||
[(Space t)]
|
|
||||||
deriving (Generic, Generic1)
|
|
||||||
|
|
||||||
instance NFData a => NFData (Space2 a)
|
|
||||||
instance NFData1 Space2
|
|
||||||
|
|
||||||
instance Functor Space2 where
|
|
||||||
fmap f (Space2 u m d) =
|
|
||||||
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
|
|
||||||
|
|
||||||
instance Comonad Space2 where
|
|
||||||
duplicate w =
|
|
||||||
Space2 (tail $ iterate (f up2) dm)
|
|
||||||
dm
|
|
||||||
(tail $ iterate (f down2) dm)
|
|
||||||
where
|
|
||||||
f g (Space l m r) = Space (fmap g l) (g m) (fmap g r)
|
|
||||||
dm = Space (tail $ iterate left2 w) w (tail $ iterate right2 w)
|
|
||||||
extract (Space2 _ m _) = extract m
|
|
||||||
|
|
||||||
down2 :: Space2 t -> Space2 t
|
|
||||||
down2 w@(Space2 u m []) = w
|
|
||||||
down2 (Space2 u m (d:ds)) = Space2 (m:u) d ds
|
|
||||||
|
|
||||||
up2 :: Space2 t -> Space2 t
|
|
||||||
up2 w@(Space2 [] m d) = w
|
|
||||||
up2 (Space2 (u:us) m d) = Space2 us u (m:d)
|
|
||||||
|
|
||||||
left2 :: Space2 t -> Space2 t
|
|
||||||
left2 (Space2 u m d) = Space2 (fmap left u) (left m) (fmap left d)
|
|
||||||
|
|
||||||
right2 :: Space2 t -> Space2 t
|
|
||||||
right2 (Space2 u m d) = Space2 (fmap right u) (right m) (fmap right d)
|
|
||||||
|
|
||||||
bound2 :: Int -> Int -> Int -> Int -> Space2 t -> [[t]]
|
|
||||||
bound2 u d l r (Space2 uw mw dw) = (reverse (take u (map (bound l r) uw))) ++ ((bound l r mw):(take d (map (bound l r) dw)))
|
|
||||||
|
|
||||||
bound2w :: Int -> Int -> Space2 t -> [[t]]
|
|
||||||
bound2w x y = bound2 (r-q) r (n-m) n
|
|
||||||
where
|
|
||||||
o = if odd x then 1 else 0
|
|
||||||
m = if even x then 1 else 0
|
|
||||||
n = (x - o) `div` 2
|
|
||||||
p = if odd y then 1 else 0
|
|
||||||
q = if even y then 1 else 0
|
|
||||||
r = (y - p) `div` 2
|
|
||||||
|
|
||||||
bound2cw :: NFData t => Int -> Int -> Space2 t -> [[t]]
|
|
||||||
bound2cw x y w = bound2 (r-q) r (n-m) n $ clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
|
|
||||||
where
|
|
||||||
o = if odd x then 1 else 0
|
|
||||||
m = if even x then 1 else 0
|
|
||||||
n = (x - o) `div` 2
|
|
||||||
p = if odd y then 1 else 0
|
|
||||||
q = if even y then 1 else 0
|
|
||||||
r = (y - p) `div` 2
|
|
||||||
|
|
||||||
clamp2cw :: NFData t => Int -> Int -> Space2 t -> Space2 t
|
|
||||||
clamp2cw x y w = clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
|
|
||||||
where
|
|
||||||
o = if odd x then 1 else 0
|
|
||||||
m = if even x then 1 else 0
|
|
||||||
n = (x - o) `div` 2
|
|
||||||
p = if odd y then 1 else 0
|
|
||||||
q = if even y then 1 else 0
|
|
||||||
r = (y - p) `div` 2
|
|
||||||
|
|
||||||
clamp2 :: NFData t => Int -> Int -> Int -> Int -> Space2 t -> Space2 t
|
|
||||||
clamp2 u d l r (Space2 uw mw dw)
|
|
||||||
= force $ Space2 (take u $ fmap (clamp l r) uw)
|
|
||||||
(clamp l r mw)
|
|
||||||
(take d $ fmap (clamp l r) dw)
|
|
||||||
|
|
||||||
clamp :: NFData t => Int -> Int -> Space t -> Space t
|
|
||||||
clamp x y (Space l m r) = force $ Space (take x l) m (take y r)
|
|
||||||
|
|
||||||
-- take a space and a rule and
|
|
||||||
-- return the next space
|
|
||||||
step :: Comonad w => (w t -> t) -> w t -> w t
|
|
||||||
step f w = w =>> f
|
|
||||||
|
|
||||||
-------------------
|
|
||||||
-- Random Spaces --
|
|
||||||
-------------------
|
|
||||||
|
|
||||||
createRandSpace :: Random a => StdGen -> Space a
|
|
||||||
createRandSpace rng =
|
|
||||||
Space (tail $ map snd $ iterate f (r1, (fst (random rng))))
|
|
||||||
(fst (random rng))
|
|
||||||
(tail $ map snd $ iterate f (r2, (fst (random rng))))
|
|
||||||
where
|
|
||||||
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
|
|
||||||
(r1,r2) = split rng
|
|
||||||
|
|
||||||
createRandSpace2 :: Random a => StdGen -> Space2 a
|
|
||||||
createRandSpace2 rng =
|
|
||||||
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
|
|
||||||
(createRandSpace rng)
|
|
||||||
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
|
|
||||||
where
|
|
||||||
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
|
|
||||||
(r1,r2) = split rng
|
|
67
src/Spaces/Space1.hs
Normal file
67
src/Spaces/Space1.hs
Normal file
|
@ -0,0 +1,67 @@
|
||||||
|
{-# LANGUAGE DeriveGeneric #-}
|
||||||
|
|
||||||
|
module Spaces.Space1 where
|
||||||
|
|
||||||
|
import Comonad
|
||||||
|
import Control.DeepSeq
|
||||||
|
import GHC.Generics
|
||||||
|
|
||||||
|
-- a locally focussed space
|
||||||
|
data Space t = Space [t] t [t]
|
||||||
|
deriving (Generic, Generic1, Show)
|
||||||
|
|
||||||
|
-- allowing strict evaluation of a space
|
||||||
|
instance NFData a => NFData (Space a)
|
||||||
|
instance NFData1 Space
|
||||||
|
|
||||||
|
-- spaces are also functors
|
||||||
|
instance Functor Space where
|
||||||
|
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
|
||||||
|
|
||||||
|
-- moving a space focus right
|
||||||
|
right :: Space t -> Maybe (Space t)
|
||||||
|
right (Space _ _ []) = Nothing
|
||||||
|
right (Space l c (r:rs)) = Just $ Space (c:l) r rs
|
||||||
|
|
||||||
|
-- moving a space's focus left
|
||||||
|
left :: Space t -> Maybe (Space t)
|
||||||
|
left (Space [] _ _) = Nothing
|
||||||
|
left (Space (l:ls) c r) = Just $ Space ls l (c:r)
|
||||||
|
|
||||||
|
-- iterate until we reach an edge
|
||||||
|
finterate :: (a -> Maybe a) -> a -> [a]
|
||||||
|
finterate f x = case (f x) of
|
||||||
|
Nothing -> []
|
||||||
|
Just y -> y : finterate f y
|
||||||
|
|
||||||
|
-- our space is a comonad
|
||||||
|
instance Comonad Space where
|
||||||
|
-- duplicate creats a meta space
|
||||||
|
duplicate w =
|
||||||
|
Space (finterate left w)
|
||||||
|
w
|
||||||
|
(finterate right w)
|
||||||
|
-- extract simply returns the focussed element
|
||||||
|
extract (Space _ c _) = c
|
||||||
|
|
||||||
|
-- clamp an infinite space to a finite space
|
||||||
|
-- relative to center
|
||||||
|
clampRel :: Int -> Int -> Space t -> Space t
|
||||||
|
clampRel x y (Space l m r) = Space (take x l) m (take y r)
|
||||||
|
|
||||||
|
-- as above, but with a set width
|
||||||
|
-- if the width is even, we need to take one less from the left
|
||||||
|
clamp :: Int -> Space t -> Space t
|
||||||
|
clamp w (Space l m r) = Space (take ln l) m (take h r)
|
||||||
|
where
|
||||||
|
h = w `div` 2
|
||||||
|
ln = h - (if even w then 1 else 0)
|
||||||
|
|
||||||
|
-- materialises a space, will hang if infinite
|
||||||
|
mat :: Space t -> [t]
|
||||||
|
mat (Space l m r) = (reverse l) ++ (m:r)
|
||||||
|
|
||||||
|
-- as above, but clamps to a given size first
|
||||||
|
matn :: Int -> Space t -> [t]
|
||||||
|
matn n = mat . (clamp n)
|
||||||
|
|
110
src/Spaces/Space2.hs
Normal file
110
src/Spaces/Space2.hs
Normal file
|
@ -0,0 +1,110 @@
|
||||||
|
{-# LANGUAGE DeriveGeneric #-}
|
||||||
|
|
||||||
|
module Spaces.Space2 where
|
||||||
|
|
||||||
|
import Comonad
|
||||||
|
import Data.Maybe
|
||||||
|
import Control.DeepSeq
|
||||||
|
import GHC.Generics
|
||||||
|
import Spaces.Space1
|
||||||
|
|
||||||
|
-- a nested space
|
||||||
|
data Space2 t = Space2 [(Space t)] (Space t) [(Space t)]
|
||||||
|
deriving (Generic, Generic1, Show)
|
||||||
|
|
||||||
|
-- generating strict data instances
|
||||||
|
instance NFData a => NFData (Space2 a)
|
||||||
|
instance NFData1 Space2
|
||||||
|
|
||||||
|
-- we can fmap into this structure by recursively fmapping
|
||||||
|
-- the inner spaces
|
||||||
|
instance Functor Space2 where
|
||||||
|
fmap f (Space2 u m d) =
|
||||||
|
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
|
||||||
|
|
||||||
|
-- map a partial function, converting to non maybe values
|
||||||
|
fintermap :: (a -> Maybe a) -> [a] -> [a]
|
||||||
|
fintermap _ [] = []
|
||||||
|
fintermap f (a:as) = case f a of
|
||||||
|
Nothing -> []
|
||||||
|
Just y -> y : fintermap f as
|
||||||
|
|
||||||
|
f :: ((Space2 a) -> Maybe (Space2 a)) -> Space (Space2 a) -> Maybe (Space (Space2 a))
|
||||||
|
f g (Space l m r) = case (g m) of
|
||||||
|
Nothing -> Nothing
|
||||||
|
Just y -> Just $ Space (fintermap g l) y (fintermap g r)
|
||||||
|
|
||||||
|
-- comonad instance for our 2d space
|
||||||
|
instance Comonad Space2 where
|
||||||
|
duplicate w =
|
||||||
|
Space2 (finterate (f up2) dm) dm (finterate (f down2) dm)
|
||||||
|
where
|
||||||
|
dm = Space (finterate left2 w) w (finterate right2 w)
|
||||||
|
-- to duplicate we must recursively duplicate in all directions
|
||||||
|
-- the focussed space becomes the whole space, with left and right
|
||||||
|
-- mapped to each side.
|
||||||
|
-- to do the up and down lists, each needs to be the middle space
|
||||||
|
-- mapped up and down as far as we can.
|
||||||
|
-- up2 and down2 will return Nothing when they cant go further
|
||||||
|
-- to extract we simply recursively extract
|
||||||
|
extract (Space2 _ m _) = extract m
|
||||||
|
|
||||||
|
-- directional moving of focus
|
||||||
|
up2 :: Space2 t -> Maybe (Space2 t)
|
||||||
|
up2 (Space2 [] _ _) = Nothing
|
||||||
|
up2 (Space2 (u:us) m d) = Just $ Space2 us u (m:d)
|
||||||
|
|
||||||
|
down2 :: Space2 t -> Maybe (Space2 t)
|
||||||
|
down2 (Space2 _ _ []) = Nothing
|
||||||
|
down2 (Space2 u m (d:ds)) = Just $ Space2 (m:u) d ds
|
||||||
|
|
||||||
|
noLeft :: Space t -> Bool
|
||||||
|
noLeft (Space [] _ _) = True
|
||||||
|
noLeft _ = False
|
||||||
|
|
||||||
|
noRight :: Space t -> Bool
|
||||||
|
noRight (Space _ _ []) = True
|
||||||
|
noRight _ = False
|
||||||
|
|
||||||
|
-- left and right require mapping further
|
||||||
|
-- we are assuming things are rectangular (maybe a bad idea?)
|
||||||
|
left2 :: Space2 t -> Maybe (Space2 t)
|
||||||
|
left2 (Space2 u m d) =
|
||||||
|
if check
|
||||||
|
then Nothing
|
||||||
|
else Just $ Space2 (fmap (f . left) u) (f $ left m) (fmap (f . left) d)
|
||||||
|
where
|
||||||
|
check = noLeft m
|
||||||
|
f l = fromJust l
|
||||||
|
|
||||||
|
right2 :: Space2 t -> Maybe (Space2 t)
|
||||||
|
right2 (Space2 u m d) =
|
||||||
|
if check
|
||||||
|
then Nothing
|
||||||
|
else Just $ Space2 (fmap (f . right) u) (f $ right m) (fmap (f . right) d)
|
||||||
|
where
|
||||||
|
check = noRight m
|
||||||
|
f l = fromJust l
|
||||||
|
|
||||||
|
-- clamp as we do in 1d Spaces
|
||||||
|
clampRel2 :: Int -> Int -> Int -> Int -> Space2 t -> Space2 t
|
||||||
|
clampRel2 w x y z (Space2 u m d) = Space2 (take w $ fmap f u) (f m) (take x $ fmap f d)
|
||||||
|
where
|
||||||
|
f = clampRel y z
|
||||||
|
|
||||||
|
clamp2 :: Int -> Int -> Space2 t -> Space2 t
|
||||||
|
clamp2 w h = clampRel2 nu nd nl nr
|
||||||
|
where
|
||||||
|
nu = h `div` 2
|
||||||
|
nd = nu - (if even h then 1 else 0)
|
||||||
|
nr = w `div` 2
|
||||||
|
nl = nr - (if even w then 1 else 0)
|
||||||
|
|
||||||
|
mat2 :: Space2 t -> [[t]]
|
||||||
|
mat2 (Space2 u m d) = (reverse (fmap mat u)) ++ ((mat m):(fmap mat d))
|
||||||
|
|
||||||
|
matn2 :: Int -> Int -> Space2 t -> [[t]]
|
||||||
|
matn2 w h = mat2 . (clamp2 w h)
|
||||||
|
|
||||||
|
step :: Comonad w => (w t -> t) -> w t -> w t
|
||||||
|
step f w = w =>> f
|
Loading…
Reference in a new issue