working 2d animation, no memory leak

This commit is contained in:
Thorn Avery 2021-04-20 19:44:30 +12:00
parent d582c20af3
commit bdda683c42
5 changed files with 201 additions and 180 deletions

View file

@ -3,7 +3,8 @@
module Automata where
import Comonad
import Spaces
import Spaces.Space1
import Spaces.Space2
import System.Random
import GHC.Generics
import Control.DeepSeq

View file

@ -9,7 +9,8 @@ import System.Console.GetOpt
import System.Environment(getArgs, getProgName)
import Data.Maybe (fromMaybe)
import Comonad
import Spaces
import Spaces.Space2
import Spaces.Space1
import Automata
import Brick
import Brick.BChan (newBChan, writeBChan)
@ -140,7 +141,7 @@ main = do
g <- initGame
let buildVty = V.mkVty V.defaultConfig
initialVty <- buildVty
void $ customMain initialVty buildVty (Just chan) (app h w) (clamp2cw w h g)
void $ customMain initialVty buildVty (Just chan) (app h w) (clamp2 w h g)
handleEvent :: (Space2 CellState) -> BrickEvent Name Tick -> EventM Name (Next (Space2 CellState))
handleEvent g (AppEvent Tick) = continue $ step rps g
@ -153,7 +154,7 @@ drawUI h w g = [ C.center $ drawGrid h w g ]
drawGrid :: Int -> Int -> Space2 CellState -> Widget Name
drawGrid h w g = vBox rows
where
bw = bound2cw w h g
bw = mat2 g
rows = [ hBox $ cellsInRow r | r <- bw ]
cellsInRow y = map drawCell y
@ -166,3 +167,21 @@ rockAttr, scissorsAttr, paperAttr :: AttrName
rockAttr = "rockAttr"
paperAttr = "paperAttr"
scissorsAttr = "scissorsAttr"
createRandSpace :: Random a => StdGen -> Space a
createRandSpace rng =
Space (tail $ map snd $ iterate f (r1, (fst (random rng))))
(fst (random rng))
(tail $ map snd $ iterate f (r2, (fst (random rng))))
where
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
(r1,r2) = split rng
createRandSpace2 :: Random a => StdGen -> Space2 a
createRandSpace2 rng =
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
(createRandSpace rng)
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
where
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
(r1,r2) = split rng

View file

@ -1,176 +0,0 @@
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveGeneric #-}
module Spaces where
import Comonad
import System.Random
import Control.DeepSeq
import GHC.Generics
------------
-- spaces --
------------
-- a locally focussed space
data Space t = Space [t] t [t]
deriving (Generic, Generic1)
instance NFData a => NFData (Space a)
instance NFData1 Space
-- spaces are also functors
instance Functor Space where
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
-- our space is a comonad
instance Comonad Space where
-- duplicate will create a new space where
-- the focussed element is our original space
-- and each side is increasingly shifted copies
-- in that direction
duplicate w =
Space (tail $ iterate left w)
w
(tail $ iterate right w)
-- extract simply returns the focussed element
extract (Space _ c _) = c
-- functions for moving the point
-- of locality.
-- todo: question the empty list cases
-- most spaces should be infinite
right :: Space t -> Space t
right w@(Space l m []) = w
right (Space l c (r:rs)) = Space (c:l) r rs
left :: Space t -> Space t
left w@(Space [] m r) = w
left (Space (l:ls) c r) = Space ls l (c:r)
-- bound will take an infinite space
-- and bound it by i and j on each side
-- (not including the focus) and
-- turn it into a list for printing
bound :: Int -> Int -> Space t -> [t]
bound i j (Space l c r) = (reverse (take i l)) ++ (c:(take j r))
-- boundw works as above, but the
-- entire list will be the size
-- given
boundw :: Int -> Space t -> [t]
boundw n = bound (x-m) x
where
o = if odd n then 1 else 0
m = if even n then 1 else 0
x = (n - o) `div` 2
---------------
-- 2d spaces --
---------------
data Space2 t =
Space2 [(Space t)]
(Space t)
[(Space t)]
deriving (Generic, Generic1)
instance NFData a => NFData (Space2 a)
instance NFData1 Space2
instance Functor Space2 where
fmap f (Space2 u m d) =
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
instance Comonad Space2 where
duplicate w =
Space2 (tail $ iterate (f up2) dm)
dm
(tail $ iterate (f down2) dm)
where
f g (Space l m r) = Space (fmap g l) (g m) (fmap g r)
dm = Space (tail $ iterate left2 w) w (tail $ iterate right2 w)
extract (Space2 _ m _) = extract m
down2 :: Space2 t -> Space2 t
down2 w@(Space2 u m []) = w
down2 (Space2 u m (d:ds)) = Space2 (m:u) d ds
up2 :: Space2 t -> Space2 t
up2 w@(Space2 [] m d) = w
up2 (Space2 (u:us) m d) = Space2 us u (m:d)
left2 :: Space2 t -> Space2 t
left2 (Space2 u m d) = Space2 (fmap left u) (left m) (fmap left d)
right2 :: Space2 t -> Space2 t
right2 (Space2 u m d) = Space2 (fmap right u) (right m) (fmap right d)
bound2 :: Int -> Int -> Int -> Int -> Space2 t -> [[t]]
bound2 u d l r (Space2 uw mw dw) = (reverse (take u (map (bound l r) uw))) ++ ((bound l r mw):(take d (map (bound l r) dw)))
bound2w :: Int -> Int -> Space2 t -> [[t]]
bound2w x y = bound2 (r-q) r (n-m) n
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
bound2cw :: NFData t => Int -> Int -> Space2 t -> [[t]]
bound2cw x y w = bound2 (r-q) r (n-m) n $ clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
clamp2cw :: NFData t => Int -> Int -> Space2 t -> Space2 t
clamp2cw x y w = clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
clamp2 :: NFData t => Int -> Int -> Int -> Int -> Space2 t -> Space2 t
clamp2 u d l r (Space2 uw mw dw)
= force $ Space2 (take u $ fmap (clamp l r) uw)
(clamp l r mw)
(take d $ fmap (clamp l r) dw)
clamp :: NFData t => Int -> Int -> Space t -> Space t
clamp x y (Space l m r) = force $ Space (take x l) m (take y r)
-- take a space and a rule and
-- return the next space
step :: Comonad w => (w t -> t) -> w t -> w t
step f w = w =>> f
-------------------
-- Random Spaces --
-------------------
createRandSpace :: Random a => StdGen -> Space a
createRandSpace rng =
Space (tail $ map snd $ iterate f (r1, (fst (random rng))))
(fst (random rng))
(tail $ map snd $ iterate f (r2, (fst (random rng))))
where
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
(r1,r2) = split rng
createRandSpace2 :: Random a => StdGen -> Space2 a
createRandSpace2 rng =
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
(createRandSpace rng)
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
where
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
(r1,r2) = split rng

67
src/Spaces/Space1.hs Normal file
View file

@ -0,0 +1,67 @@
{-# LANGUAGE DeriveGeneric #-}
module Spaces.Space1 where
import Comonad
import Control.DeepSeq
import GHC.Generics
-- a locally focussed space
data Space t = Space [t] t [t]
deriving (Generic, Generic1, Show)
-- allowing strict evaluation of a space
instance NFData a => NFData (Space a)
instance NFData1 Space
-- spaces are also functors
instance Functor Space where
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
-- moving a space focus right
right :: Space t -> Maybe (Space t)
right (Space _ _ []) = Nothing
right (Space l c (r:rs)) = Just $ Space (c:l) r rs
-- moving a space's focus left
left :: Space t -> Maybe (Space t)
left (Space [] _ _) = Nothing
left (Space (l:ls) c r) = Just $ Space ls l (c:r)
-- iterate until we reach an edge
finterate :: (a -> Maybe a) -> a -> [a]
finterate f x = case (f x) of
Nothing -> []
Just y -> y : finterate f y
-- our space is a comonad
instance Comonad Space where
-- duplicate creats a meta space
duplicate w =
Space (finterate left w)
w
(finterate right w)
-- extract simply returns the focussed element
extract (Space _ c _) = c
-- clamp an infinite space to a finite space
-- relative to center
clampRel :: Int -> Int -> Space t -> Space t
clampRel x y (Space l m r) = Space (take x l) m (take y r)
-- as above, but with a set width
-- if the width is even, we need to take one less from the left
clamp :: Int -> Space t -> Space t
clamp w (Space l m r) = Space (take ln l) m (take h r)
where
h = w `div` 2
ln = h - (if even w then 1 else 0)
-- materialises a space, will hang if infinite
mat :: Space t -> [t]
mat (Space l m r) = (reverse l) ++ (m:r)
-- as above, but clamps to a given size first
matn :: Int -> Space t -> [t]
matn n = mat . (clamp n)

110
src/Spaces/Space2.hs Normal file
View file

@ -0,0 +1,110 @@
{-# LANGUAGE DeriveGeneric #-}
module Spaces.Space2 where
import Comonad
import Data.Maybe
import Control.DeepSeq
import GHC.Generics
import Spaces.Space1
-- a nested space
data Space2 t = Space2 [(Space t)] (Space t) [(Space t)]
deriving (Generic, Generic1, Show)
-- generating strict data instances
instance NFData a => NFData (Space2 a)
instance NFData1 Space2
-- we can fmap into this structure by recursively fmapping
-- the inner spaces
instance Functor Space2 where
fmap f (Space2 u m d) =
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
-- map a partial function, converting to non maybe values
fintermap :: (a -> Maybe a) -> [a] -> [a]
fintermap _ [] = []
fintermap f (a:as) = case f a of
Nothing -> []
Just y -> y : fintermap f as
f :: ((Space2 a) -> Maybe (Space2 a)) -> Space (Space2 a) -> Maybe (Space (Space2 a))
f g (Space l m r) = case (g m) of
Nothing -> Nothing
Just y -> Just $ Space (fintermap g l) y (fintermap g r)
-- comonad instance for our 2d space
instance Comonad Space2 where
duplicate w =
Space2 (finterate (f up2) dm) dm (finterate (f down2) dm)
where
dm = Space (finterate left2 w) w (finterate right2 w)
-- to duplicate we must recursively duplicate in all directions
-- the focussed space becomes the whole space, with left and right
-- mapped to each side.
-- to do the up and down lists, each needs to be the middle space
-- mapped up and down as far as we can.
-- up2 and down2 will return Nothing when they cant go further
-- to extract we simply recursively extract
extract (Space2 _ m _) = extract m
-- directional moving of focus
up2 :: Space2 t -> Maybe (Space2 t)
up2 (Space2 [] _ _) = Nothing
up2 (Space2 (u:us) m d) = Just $ Space2 us u (m:d)
down2 :: Space2 t -> Maybe (Space2 t)
down2 (Space2 _ _ []) = Nothing
down2 (Space2 u m (d:ds)) = Just $ Space2 (m:u) d ds
noLeft :: Space t -> Bool
noLeft (Space [] _ _) = True
noLeft _ = False
noRight :: Space t -> Bool
noRight (Space _ _ []) = True
noRight _ = False
-- left and right require mapping further
-- we are assuming things are rectangular (maybe a bad idea?)
left2 :: Space2 t -> Maybe (Space2 t)
left2 (Space2 u m d) =
if check
then Nothing
else Just $ Space2 (fmap (f . left) u) (f $ left m) (fmap (f . left) d)
where
check = noLeft m
f l = fromJust l
right2 :: Space2 t -> Maybe (Space2 t)
right2 (Space2 u m d) =
if check
then Nothing
else Just $ Space2 (fmap (f . right) u) (f $ right m) (fmap (f . right) d)
where
check = noRight m
f l = fromJust l
-- clamp as we do in 1d Spaces
clampRel2 :: Int -> Int -> Int -> Int -> Space2 t -> Space2 t
clampRel2 w x y z (Space2 u m d) = Space2 (take w $ fmap f u) (f m) (take x $ fmap f d)
where
f = clampRel y z
clamp2 :: Int -> Int -> Space2 t -> Space2 t
clamp2 w h = clampRel2 nu nd nl nr
where
nu = h `div` 2
nd = nu - (if even h then 1 else 0)
nr = w `div` 2
nl = nr - (if even w then 1 else 0)
mat2 :: Space2 t -> [[t]]
mat2 (Space2 u m d) = (reverse (fmap mat u)) ++ ((mat m):(fmap mat d))
matn2 :: Int -> Int -> Space2 t -> [[t]]
matn2 w h = mat2 . (clamp2 w h)
step :: Comonad w => (w t -> t) -> w t -> w t
step f w = w =>> f