working 2d animation, but leaks memory

This commit is contained in:
Thorn Avery 2021-04-20 14:25:18 +12:00
parent b45de145fe
commit d582c20af3
6 changed files with 363 additions and 214 deletions

View file

@ -18,6 +18,8 @@ build-type: Simple
executable cellularAutomata
main-is: Main.hs
ghc-options: -threaded
-O2
-- other-modules:
-- other-extensions:
build-depends: base >=4.13 && <4.14
@ -25,6 +27,12 @@ executable cellularAutomata
, turtle
, brick
, process
, containers
, linear
, microlens
, microlens-th
, vty
, deepseq
hs-source-dirs: src
default-language: Haskell2010
extra-libraries: ncurses

View file

@ -1,4 +1,5 @@
{ mkDerivation, base, brick, lib, ncurses, process, random, turtle
{ mkDerivation, base, brick, containers, deepseq, lib, linear
, microlens, microlens-th, ncurses, process, random, turtle, vty
}:
mkDerivation {
pname = "cellularAutomata";
@ -6,7 +7,10 @@ mkDerivation {
src = ./..;
isLibrary = false;
isExecutable = true;
executableHaskellDepends = [ base brick process random turtle ];
executableHaskellDepends = [
base brick containers deepseq linear microlens microlens-th process
random turtle vty
];
executableSystemDepends = [ ncurses ];
license = "unknown";
hydraPlatforms = lib.platforms.none;

89
src/Automata.hs Normal file
View file

@ -0,0 +1,89 @@
{-# LANGUAGE DeriveGeneric #-}
module Automata where
import Comonad
import Spaces
import System.Random
import GHC.Generics
import Control.DeepSeq
-----------------------
-- cellular automata --
-----------------------
-- the states our cells can be in
-- may need to provide an ordering
-- may need to generalise the number
-- of states
data CellState = Rock | Paper | Scissors
deriving (Eq, Bounded, Enum, Generic)
instance NFData CellState
instance Random CellState where
random g = case randomR (fromEnum (minBound :: CellState), fromEnum (maxBound :: CellState)) g of
(r, g') -> (toEnum r, g')
randomR (a,b) g = case randomR (fromEnum a, fromEnum b) g of
(r, g') -> (toEnum r, g')
-- how the states are displayed on screen
-- this should probably be input to a function
-- rather than hardcoded
instance Show CellState
where
show Rock = ""
show Paper = " "
show Scissors = "_"
-- -- a rule stating how a cell is determined
-- rule :: Space CellState -> CellState
-- rule (Space (l:_) _ (r:_))
-- | l == r = Dead
-- | otherwise = Alive
--
-- -- a second rule for example
-- rule2 :: Space CellState -> CellState
-- rule2 (Space (l1:l2:_) m (r1:r2:_))
-- | m == Alive && numAlive == 1 = Dead
-- | m == Alive && numAlive == 4 = Dead
-- | m == Dead && numAlive == 3 = Alive
-- | otherwise = m
-- where
-- ns = [l1, l2, r1, r2]
-- numAlive = length $ filter (== Alive) ns
--
-- rule3 :: Space CellState -> CellState
-- rule3 (Space (l:_) m (r:_))
-- | l == r = m
-- | otherwise = if m == Alive then Dead else Alive
--------------
-- 2d rules --
--------------
rps :: Space2 CellState -> CellState
rps (Space2 u m d)
= case me of
Rock -> if (length $ filter (== Paper) ns) > 2 then Paper else Rock
Paper -> if (length $ filter (== Scissors) ns) > 2 then Scissors else Paper
Scissors -> if (length $ filter (== Rock) ns) > 2 then Rock else Scissors
where
f b (Space (l:_) m (r:_)) = [l,r] ++ (if b then [m] else [])
f b (Space [] m (r:_)) = [r] ++ (if b then [m] else [])
f b (Space (l:_) m []) = [l] ++ (if b then [m] else [])
f b (Space [] m []) = if b then [m] else []
safeHead _ [] = []
safeHead b (x:_) = f b x
ns = concat [ (safeHead True u), (f False m), (safeHead True d) ]
me = extract m
--conway :: Space2 CellState -> CellState
--conway (Space2 (u:_) m (d:_))
-- = case me of
-- Alive -> if (length ns) == 2 || (length ns == 3) then Alive else Dead
-- Dead -> if (length ns) == 3 then Alive else Dead
-- where
-- f b (Space (l:_) m (r:_)) = [l,r] ++ (if b then [m] else [])
-- ns = filter (== Alive) $ concat [ (f True u), (f False m), (f True d) ]
-- me = extract m

12
src/Comonad.hs Normal file
View file

@ -0,0 +1,12 @@
module Comonad where
-------------------
-- comonad class --
-------------------
class Functor w => Comonad w
where
(=>>) :: w a -> (w a -> b) -> w b
extract :: w a -> a
duplicate :: w a -> w (w a)
x =>> f = fmap f (duplicate x)

View file

@ -1,3 +1,5 @@
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Control.Monad
@ -6,122 +8,45 @@ import System.Random
import System.Console.GetOpt
import System.Environment(getArgs, getProgName)
import Data.Maybe (fromMaybe)
import Comonad
import Spaces
import Automata
import Brick
import Brick.BChan (newBChan, writeBChan)
import qualified Brick.Widgets.Border as B
import qualified Brick.Widgets.Border.Style as BS
import qualified Brick.Widgets.Center as C
import qualified Graphics.Vty as V
import Control.Applicative
import Control.Monad.IO.Class
import Control.Concurrent
import Control.DeepSeq
-------------------
-- comonad class --
-------------------
-----------------
-- brick stuff --
-----------------
class Functor w => Comonad w
where
(=>>) :: w a -> (w a -> b) -> w b
extract :: w a -> a
duplicate :: w a -> w (w a)
x =>> f = fmap f (duplicate x)
data Tick = Tick
type Name = ()
------------
-- spaces --
------------
-- App definition
-- a locally focussed space
data Space t = Space [t] t [t]
app :: Int -> Int -> App (Space2 CellState) Tick Name
app h w = App { appDraw = drawUI h w
, appChooseCursor = neverShowCursor
, appHandleEvent = handleEvent
, appStartEvent = return
, appAttrMap = const theMap
}
-- spaces are also functors
instance Functor Space where
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
-- Handling events
-- our space is a comonad
instance Comonad Space where
-- duplicate will create a new space where
-- the focussed element is our original space
-- and each side is increasingly shifted copies
-- in that direction
duplicate w =
Space (tail $ iterate left w)
w
(tail $ iterate right w)
-- extract simply returns the focussed element
extract (Space _ c _) = c
-- functions for moving the point
-- of locality.
-- todo: question the empty list cases
-- most spaces should be infinite
right :: Space t -> Space t
right s@(Space l c []) = s
right (Space l c (r:rs)) = Space (c:l) r rs
left :: Space t -> Space t
left s@(Space [] c r) = s
left (Space (l:ls) c r) = Space ls l (c:r)
-- bound will take an infinite space
-- and bound it by i and j on each side
-- (not including the focus) and
-- turn it into a list for printing
bound :: Int -> Int -> Space t -> [t]
bound i j (Space l c r) = (reverse (take i l)) ++ (c:(take j r))
-- boundw works as above, but the
-- entire list will be the size
-- given
boundw :: Int -> Space t -> [t]
boundw n = bound (x-m) x
where
o = if odd n then 1 else 0
m = if even n then 1 else 0
x = (n - o) `div` 2
-----------------------
-- cellular automata --
-----------------------
-- the states our cells can be in
-- may need to provide an ordering
-- may need to generalise the number
-- of states
data CellState = Alive | Dead
deriving (Eq, Bounded, Enum)
instance Random CellState where
random g = case randomR (fromEnum (minBound :: CellState), fromEnum (maxBound :: CellState)) g of
(r, g') -> (toEnum r, g')
randomR (a,b) g = case randomR (fromEnum a, fromEnum b) g of
(r, g') -> (toEnum r, g')
-- how the states are displayed on screen
-- this should probably be input to a function
-- rather than hardcoded
instance Show CellState
where
show Alive = ""
show Dead = " "
-- a rule stating how a cell is determined
rule :: Space CellState -> CellState
rule (Space (l:_) _ (r:_))
| l == r = Dead
| otherwise = Alive
-- a second rule for example
rule2 :: Space CellState -> CellState
rule2 (Space (l1:l2:_) m (r1:r2:_))
| m == Alive && numAlive == 1 = Dead
| m == Alive && numAlive == 4 = Dead
| m == Dead && numAlive == 3 = Alive
| otherwise = m
where
ns = [l1, l2, r1, r2]
numAlive = length $ filter (== Alive) ns
rule3 :: Space CellState -> CellState
rule3 (Space (l:_) m (r:_))
| l == r = m
| otherwise = if m == Alive then Dead else Alive
-- take a space and a rule and
-- return the next space
step :: Comonad w => (w t -> t) -> w t -> w t
step f w = w =>> f
theMap :: AttrMap
theMap = attrMap V.defAttr
[ (rockAttr, V.red `on` V.blue)
, (scissorsAttr, V.green `on` V.red)
, (paperAttr, V.blue `on` V.green)
]
---------------
-- rng stuff --
@ -134,74 +59,6 @@ ilobs rng = b : (ilobs r)
where
(b,r) = random rng
-- this is kinda gross but if it works it works
takeGive :: Int -> [a] -> ([a],[a])
takeGive n as = ( (take n as), (drop n as) )
--------------------------
-- 2d cellular automata --
--------------------------
data Space2 t =
Space2 [(Space t)]
(Space t)
[(Space t)]
instance Functor Space2 where
fmap f (Space2 u m d) =
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
instance Comonad Space2 where
duplicate w =
Space2 (tail $ iterate (f up2) dm)
dm
(tail $ iterate (f down2) dm)
where
f g (Space l m r) = Space (fmap g l) (g m) (fmap g r)
dm = Space (tail $ iterate left2 w) w (tail $ iterate right2 w)
extract (Space2 _ m _) = extract m
down2 :: Space2 t -> Space2 t
down2 w@(Space2 u m []) = w
down2 (Space2 u m (d:ds)) = Space2 (m:u) d ds
up2 :: Space2 t -> Space2 t
up2 w@(Space2 [] m d) = w
up2 (Space2 (u:us) m d) = Space2 us u (m:d)
left2 :: Space2 t -> Space2 t
left2 (Space2 u m d) = Space2 (fmap left u) (left m) (fmap left d)
right2 :: Space2 t -> Space2 t
right2 (Space2 u m d) = Space2 (fmap right u) (right m) (fmap right d)
bound2 :: Int -> Int -> Int -> Int -> Space2 t -> [[t]]
bound2 u d l r (Space2 uw mw dw) = (reverse (take u (map (bound l r) uw))) ++ ((bound l r mw):(take d (map (bound l r) dw)))
bound2w :: Int -> Int -> Space2 t -> [[t]]
bound2w x y = bound2 (r-q) r (n-m) n
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
--------------
-- 2d rules --
--------------
conway :: Space2 CellState -> CellState
conway (Space2 (u:_) m (d:_))
= case me of
Alive -> if (length ns) == 2 || (length ns == 3) then Alive else Dead
Dead -> if (length ns) == 3 then Alive else Dead
where
f b (Space (l:_) m (r:_)) = [l,r] ++ (if b then [m] else [])
ns = filter (== Alive) $ concat [ (f True u), (f False m), (f True d) ]
me = extract m
-----------------
-- gross io bs --
-----------------
@ -262,47 +119,50 @@ parseArgs = do
header = "Usage: " ++ progName ++ " [OPTION...]"
helpMessage = usageInfo header options
initGame :: IO (Space2 CellState)
initGame = do
rng <- getStdGen
return $ createRandSpace2 rng
---------------
-- main loop --
---------------
createRandSpace :: StdGen -> Space CellState
createRandSpace rng =
Space (tail $ map snd $ iterate f (r1, Alive))
(fst (random rng))
(tail $ map snd $ iterate f (r2, Alive))
where
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
(r1,r2) = split rng
createRandSpace2 :: StdGen -> Space2 CellState
createRandSpace2 rng =
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
(createRandSpace rng)
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
where
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
(r1,r2) = split rng
-- simply print the current space, then recurse to the next
--runAutomata :: Space2 CellState -> Int -> Int -> IO ()
--runAutomata s 0 w = putStrLn $ concat $ map show $ boundw w s
--runAutomata s n w = do
-- mapM_ putStrLn $ map show $ concat $ bound2w w s
-- runAutomata (step conway s) (n - 1) w
main :: IO ()
main = do
options <- parseArgs
rng <- getStdGen
let cs = map (\x -> if x then Alive else Dead) $ ilobs rng
let w = (optWidth options)
let h = (optHeight options)
let g = (optGenerations options)
let s = createRandSpace2 rng
mapM_ (f w h) (loop conway g s)
chan <- newBChan 1
forkIO $ forever $ do
writeBChan chan Tick
threadDelay 100000
g <- initGame
let buildVty = V.mkVty V.defaultConfig
initialVty <- buildVty
void $ customMain initialVty buildVty (Just chan) (app h w) (clamp2cw w h g)
handleEvent :: (Space2 CellState) -> BrickEvent Name Tick -> EventM Name (Next (Space2 CellState))
handleEvent g (AppEvent Tick) = continue $ step rps g
handleEvent g (VtyEvent (V.EvKey (V.KChar 'q') [])) = halt g
handleEvent g _ = continue g
drawUI :: Int -> Int -> Space2 CellState -> [Widget Name]
drawUI h w g = [ C.center $ drawGrid h w g ]
drawGrid :: Int -> Int -> Space2 CellState -> Widget Name
drawGrid h w g = vBox rows
where
f w h s = do
mapM_ putStrLn $ map (concat . (map show)) $ bound2w w h s
putStrLn (take w (repeat '-'))
loop f n s = take n $ iterate (step f) s
bw = bound2cw w h g
rows = [ hBox $ cellsInRow r | r <- bw ]
cellsInRow y = map drawCell y
drawCell :: CellState -> Widget Name
drawCell Paper = withAttr paperAttr $ str " "
drawCell Scissors = withAttr scissorsAttr $ str " "
drawCell Rock = withAttr rockAttr $ str " "
rockAttr, scissorsAttr, paperAttr :: AttrName
rockAttr = "rockAttr"
paperAttr = "paperAttr"
scissorsAttr = "scissorsAttr"

176
src/Spaces.hs Normal file
View file

@ -0,0 +1,176 @@
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveGeneric #-}
module Spaces where
import Comonad
import System.Random
import Control.DeepSeq
import GHC.Generics
------------
-- spaces --
------------
-- a locally focussed space
data Space t = Space [t] t [t]
deriving (Generic, Generic1)
instance NFData a => NFData (Space a)
instance NFData1 Space
-- spaces are also functors
instance Functor Space where
fmap f (Space l c r) = Space (map f l) (f c) (map f r)
-- our space is a comonad
instance Comonad Space where
-- duplicate will create a new space where
-- the focussed element is our original space
-- and each side is increasingly shifted copies
-- in that direction
duplicate w =
Space (tail $ iterate left w)
w
(tail $ iterate right w)
-- extract simply returns the focussed element
extract (Space _ c _) = c
-- functions for moving the point
-- of locality.
-- todo: question the empty list cases
-- most spaces should be infinite
right :: Space t -> Space t
right w@(Space l m []) = w
right (Space l c (r:rs)) = Space (c:l) r rs
left :: Space t -> Space t
left w@(Space [] m r) = w
left (Space (l:ls) c r) = Space ls l (c:r)
-- bound will take an infinite space
-- and bound it by i and j on each side
-- (not including the focus) and
-- turn it into a list for printing
bound :: Int -> Int -> Space t -> [t]
bound i j (Space l c r) = (reverse (take i l)) ++ (c:(take j r))
-- boundw works as above, but the
-- entire list will be the size
-- given
boundw :: Int -> Space t -> [t]
boundw n = bound (x-m) x
where
o = if odd n then 1 else 0
m = if even n then 1 else 0
x = (n - o) `div` 2
---------------
-- 2d spaces --
---------------
data Space2 t =
Space2 [(Space t)]
(Space t)
[(Space t)]
deriving (Generic, Generic1)
instance NFData a => NFData (Space2 a)
instance NFData1 Space2
instance Functor Space2 where
fmap f (Space2 u m d) =
Space2 (fmap (fmap f) u) (fmap f m) (fmap (fmap f) d)
instance Comonad Space2 where
duplicate w =
Space2 (tail $ iterate (f up2) dm)
dm
(tail $ iterate (f down2) dm)
where
f g (Space l m r) = Space (fmap g l) (g m) (fmap g r)
dm = Space (tail $ iterate left2 w) w (tail $ iterate right2 w)
extract (Space2 _ m _) = extract m
down2 :: Space2 t -> Space2 t
down2 w@(Space2 u m []) = w
down2 (Space2 u m (d:ds)) = Space2 (m:u) d ds
up2 :: Space2 t -> Space2 t
up2 w@(Space2 [] m d) = w
up2 (Space2 (u:us) m d) = Space2 us u (m:d)
left2 :: Space2 t -> Space2 t
left2 (Space2 u m d) = Space2 (fmap left u) (left m) (fmap left d)
right2 :: Space2 t -> Space2 t
right2 (Space2 u m d) = Space2 (fmap right u) (right m) (fmap right d)
bound2 :: Int -> Int -> Int -> Int -> Space2 t -> [[t]]
bound2 u d l r (Space2 uw mw dw) = (reverse (take u (map (bound l r) uw))) ++ ((bound l r mw):(take d (map (bound l r) dw)))
bound2w :: Int -> Int -> Space2 t -> [[t]]
bound2w x y = bound2 (r-q) r (n-m) n
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
bound2cw :: NFData t => Int -> Int -> Space2 t -> [[t]]
bound2cw x y w = bound2 (r-q) r (n-m) n $ clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
clamp2cw :: NFData t => Int -> Int -> Space2 t -> Space2 t
clamp2cw x y w = clamp2 (r-q+1) (r+1) (n-m+1) (n+1) w
where
o = if odd x then 1 else 0
m = if even x then 1 else 0
n = (x - o) `div` 2
p = if odd y then 1 else 0
q = if even y then 1 else 0
r = (y - p) `div` 2
clamp2 :: NFData t => Int -> Int -> Int -> Int -> Space2 t -> Space2 t
clamp2 u d l r (Space2 uw mw dw)
= force $ Space2 (take u $ fmap (clamp l r) uw)
(clamp l r mw)
(take d $ fmap (clamp l r) dw)
clamp :: NFData t => Int -> Int -> Space t -> Space t
clamp x y (Space l m r) = force $ Space (take x l) m (take y r)
-- take a space and a rule and
-- return the next space
step :: Comonad w => (w t -> t) -> w t -> w t
step f w = w =>> f
-------------------
-- Random Spaces --
-------------------
createRandSpace :: Random a => StdGen -> Space a
createRandSpace rng =
Space (tail $ map snd $ iterate f (r1, (fst (random rng))))
(fst (random rng))
(tail $ map snd $ iterate f (r2, (fst (random rng))))
where
f (r,b) = let (nb,nr) = (random r) in (nr,nb)
(r1,r2) = split rng
createRandSpace2 :: Random a => StdGen -> Space2 a
createRandSpace2 rng =
Space2 (tail $ map snd $ iterate f (r1, (createRandSpace r1)))
(createRandSpace rng)
(tail $ map snd $ iterate f (r2, (createRandSpace r2)))
where
f (r,s) = let (nr1,nr2) = split r in (nr2, (createRandSpace nr1))
(r1,r2) = split rng